

Björn Winter

Tolerance analysis of a Vernier-Design

9 / 2024

- History
- The "Problem"
- Root cause analysis
- Solution
- Results

ebmpapst

History - Simulation

ebmpapst

engineering a better life

A new, "Low Speed Motor" should be developped.

A Vernier-Design was analysed and promised very good performance.

Samples of the selected Variant of Topology 2 were build.

History - Simulation

ebmpapst

First Tests "on the point" regarding

- Ind. Voltage (shape and magnitude)
- Poweroutput / Efficiency

The Problem

engineering a better life

Cogging Torque, much too high

Root cause analysis

- In cooperation with the LCM/EAL, the mech. tolerances of the magnets and their positioning in the rotor are identified as
 the main cause of the excessive cogging torque.
- After the calculation models were extended with regard to the following tolerances, the dependencies of the cogging torques on individual tolerances could be represented.
 - a) Magnet Width Tolerance
 - b) Magnetic Height Tolerance
 - c) Tangential Position Tolerance
 - d) Radial Position Tolerance

Root cause analysis

engineering a better life

Without height tolerance (b)
Without side offset (c)
Without width tolerance (a)
With all tolerances

VernierMuster2.noLoad_postrocessing.torque_pp[Fx|bm]
 VernierMuster2.noLoad_postrocessing.torque_pp[Fx|shiftb]
 VernierMuster2.noLoad_postrocessing.torque_pp[Fx|bm(alt)]
 VernierMuster2.noLoad_postrocessing.torque_pp[Fx|hm]
 VernierMuster2.noLoad_postrocessing.torque_pp[Fx]
 VernierMuster2.noLoad_postrocessing.torque_pp[Fx01]

Solution – optimized Geometry incl. tolerances

Solution - Component tolerances

Results – old design

Results – optimized design

Results - comparison

Thank You

ebmpapst