# Axial Magnetic Bearings in SyMSpace

Gerald Jungmayr, Dominik Freller September, 19<sup>th</sup> 2024



# **Application Example**

#### Combined axial/radial magnetic bearing



3D FE: Radial forces



2D FE used for optimization of axial force generation and radial bias flux



#### **Basic Model**

- Axisymmetric actuators (r-z coordinate system)
- FE simulations are done in FEMM
- Geometry based on script geometry







#### **Stator Parts**



#### Implemented 2D geometries (rotationally symmetric)



#### **Example Geometry**







#### Simulation



# **Axial Simulation Result**

Preview example: Force = f (axial position, current)







## **Axial Simulation**

Preview example: Force = f(current) at middle position z=0mm



# **Radial Simulation**

Approximation of the radial stiffness  $k_r$  using 2D FE simulation

Rotor moved by *r* in direction of *x*-axis



radial deflection of a magnet cross section at the circumferential angle  $\varphi$ 

$$\Delta r = r \cdot \cos{(\varphi)}$$

## **Radial Simulation**

#### Variation of rotor size allows estimation of radial stiffness

smaller magnet  $\Delta r = -r$  bigger magnet  $\Delta r = +r$   $\Rightarrow W_{mag}^{co^*}(-r)$   $\Rightarrow W_{mag}^{co^*}(r)$ 



Approximation of magnetic conenergy of a rotor moved by *r* in direction of *x*-axis

$$W_{mag}^{co}\left(r\right) pprox \int_{0}^{2\pi} rac{W_{mag}^{co*}\left(r \cdot \cos\left(\varphi\right)\right)}{2\pi} d\varphi$$

radial stiffness



$$k_r = \left. \frac{d^2 W_{mag}^{co}(r)}{dr^2} \right|_{r=0} = f_2$$

# Characteristic quantity for magnetic bearing dynamic

#### Used for winding design



Maximum dynamic start position  $x_{0,stable}$  can be calculated analytically

→ If the voltage  $u = -u_{max}$  is applied at t = 0 s and the i.c. are  $x(0) < x_{0,stable}$  and  $v_0 = 0$  m/s the mass can pulled back to x = 0 µm

# Characteristic quantity for magnetic bearing dynamic

#### Used for winding design



# Science becomes reality

