Josef Passenbrunner, Team Leader Motor Technology, Tel: +43 (0)732 2468 6087, www.lcm.at

Rotordynamic simulation

SyMSpace Days

September 18-19, 2024

Introduction

- Calculation of bending frequencies important for high-speed systems
 - High-speed compressor systems
 - Electrically assisted turbochargers
 - Close link to magnetically levitated systems
- Integration in optimization loop preferable
- Simulation of time transient problems interesting
 - Estimation of deflections during runup
 - Especially important with magnetic bearings

Quelle: Pankl Turbosystems GmbH

SyMSpace Component

- Special workflow implemented
- Integrable in standard motor model
 - Combined simulation of motor and rotor dynamic aspects possible

Workflow

Stand alone project

- Add basic project structure
 - Material Container
 - Geometry
- Add system structure
 - Serves as container for elements
 - Modeling of multiple systems possible
- Add interface to calculation software
 - Converts geometry into HOTINT structure
 - Sets general parameters
 - Provides calculation results

Interface

Settings

• HOTINT:

- Multibody simulation tool for ridged and flexible structures
- Free software package (https://hotint.lcm.at/)
- Provides calculation of eigenfrequencies
- Provides calculation of time transient processes

Cylindrical element

- · First Row: Length
- · Second Row: Outer Diameter
- · Third Row: Inner Diamter

- Most important element
 - Freely definable geometry
 - 2 beam types
 - RotorBeamXAxis
 - Most stable for time transient simulation
 - No gyroscopic effects implemented
 - ANCFBeamShear3DLinear
 - Implements gyroscopic effects
 - Beam also implements shear stress (important for shafts increased diameters)
- Geometry can be coupled with other parameters

	0	1	2
0	25.0	30.0	25.0
1	10.0	20.0	10.0
2	0.0	0.0	0.0

Disks

- Essential for RotorBeamXAxis to integrate gyroscopic effects
- Not necessary for ANCFBeamShear3DLinear
- Parameters:
 - Inertia and mass as input
 - Or self calculated
- STL overlay possible
- No bending of the disk itself

Bearing

- Parameters:
 - Position
 - Stiffness (x,y,z)
 - Damping
 - Definition of constrained directions possible
- Allows connection to ground
- Allows coupling of two systems

Unbalance, rigid body

- Unbalance
 - Used to implement an unbalance of a rotor
 - Leads to deflections during run-up processes

- Rigid body
 - Can be used to model housings,...

Interface

Settings

- Adjustable Max. and Min. Node Distance
- Setting of beam type to use in simulation
- Setting of considering gyroscopic effects
- Setting simulation type:
 - Eigensimulation
 - Ramp-up simulation (time transient)
- Setting start speed
- Speed increment and end speed for campbell plot

Interface

Results

- Exports occurring eigenmodes (rigid body and flexible modes)
- Exports deflection during runup (sensor element needed)
- Provides Preview:
 - Campbell Plot
 - Vtk preview of deflections

Comparison with Ansys

- SyMSpace Mode1 200,8Hz/ Ansys 196,9Hz
- SyMSpace Mode1 347,2Hz/ Ansys 339,65Hz

SyMSpace Mode1 2300Hz/ Ansys 2273Hz

- SyMSpace Mode1 1030Hz/ Ansys 988,6Hz
- SyMSpace Mode2 1135Hz/ Ansys 1100,6Hz

Outlook

- Completion of time-transient run-up simulation
 - Stability of simulation must be improved
- Visualization of bending line in vtk-preview
- Implementation of impeller approximation
 - Error minimization of mass, inertia and center of gravity considering geometric boundaries
 - Approximation with multiple disk (cylindrical) elements

Science becomes reality

