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AC Losses and Transient Voltage Effects
in Electric Machines

Efficient Simulation Methods
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Overview of Additional Losses

Efficient simulation method

Based on magnetostatic FEM Based on AC simulation with frozen permeability
nSteps

f< fy

Proximity and skin losses Proximity and skin losses

Losses in parallel wires

Magnet losses

(slot harmonics, current distortion) GRS O SR Y

Losses in rotating and stationary
thin-walled sleeves
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Losses in solid materials
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Skin and proximity losses

Losses due to skin effect

* Background

* Alternating current in the conductor generates a magnetic field,
which causes an electric field induced in the conductor.

* Current density in the middle of the conductor is reduced and at the
outer boundary increased.

* Calculation method
* Increase of resistance as a function of frequency Ke
* Analytical formula for round wire exists.

* For conductors with arbitrary cross-sections Ke
is calculated with FEA.

Pskz'n — m(Ke(f) — ]-) Rch2
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Skin and proximity losses

Proximity losses

* Background

* Losses due to the alternating magnetic fields, e.g. caused by leakage
flux in the slots.

* (Calculation method

* Fourier spectrum of flux density is calculated with FEA for each
conductor in slot.

* Losses in the wire are calculated by means of a loss function Fp

Pprozc - ZZZ (prBzy + FPyBjy) f12h/2
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Flux density and
current density
distribution
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Losses in stranded windings

Background

* Power density of electrical machines increases with speed.

* The number of turns decreases, and the wire cross-section increases with increasing speed.
* At low turn count, winding conductors are often subdivided into multiple insulated strands.
* The arrangement of the wires in the slot depends on the manufacturing process.
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Losses in stranded windings

Calculation method

* Parameters of the equivalent circuit are calculated
with FEA in the frequency domain

Circulating currents and additional copper losses
are evaluated
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Losses due to PWM Harmonics

Calculation of PWM signal

Fundamental for Phase Leg ¢
Fundamental for Phase Leg b

* Calculation is carried out in the frequency domain. Fundsments! fo Phase Leg a Triangular Carrer
* Intersection of modulated voltage with triangular carrier.

* Calculation of the Fourier coefficients for each switching cycle of the
voltage signal for

* Third harmonic injection AL O]
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* Discontinuous PWM min /z: \ —— Sinusoidal signal
* Discontinuous PWM max

2- or 3-level PWM

Normalized amplitude
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Losses due to PWM Harmonics

Calculation of PWM signal

* Evaluation of the currents for a symmetrical m phase
system with floating star connection.
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* Frequency dependent inductances and resistances are used % 0]
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Losses due to PWM Harmonics

L oss calculation

* Simulation of the permeability distribution in the laminated core for the considered load point.
* Calculation of losses as a function of frequency with AC FE Solver at "frozen" permeabilities.
* Evaluation of losses in solid and laminated components.

* Wire and hair pins

* Laminated stack

* Magnet
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AC losses — Loadpoint and dq Grid
Usage in SyMSpace
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AC losses in dq Grid in SyMSpace

Add AC losses to WebGUI project

* Add Component ,PMSM AClosses FEMM" to PMSM Simulation
* Settings in Geometry.Stator.Coil:

* EnableACloss is set automatically to true after inserting
AClosses

* Set we, ncw, WireGrade and AspectFactor
* Check Preview of WireDiameter
* Further checks:

* Preview of PMSM_Model (check if the wires are drawn in the
correct slots, especially for double layer windings)

* Check if all materials have a field rho_el or kappa_20
* Check if laminated materials have a field tlam

) ) : LINZ
Science becomes reality

-

Previews

Parameters

ncw
keu_max

@ WireGrade
Theta_c
lambda
EnableACLoss

)

AspectFactor

Number of turns per coil

510

Number of parallel wires per coil

13.0

Maximum pessible copper fill factor for coil

0.5

Wire grade

‘Grade2'

Temperature of coil

120.0 degC
Thermal conductivity for coil

0.8 W.m-1.K-1

Enable AC loss calculation

true

Wire distribution factor (highest losses occur when the asg
n /K
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AC losses in dq Grid in SyMSpace

Postprocessing - PWM Settings

* Usage in Postprocessing (RBF) Components

AC losses are automatically evaluated according to
settings in Postprocessing_Settings

* Master PWM Settings in
Postprocessing_Settings.Power_Supply

Science becomes reality I = m

Constant PWM frequency or speed-dependent vector
enable_PWM: default is false = set to true

ModulationType: sine, space vector, third harmonic,
DPWM min, DPWM max

InverterLevels: 2 or 3

MaxLossError: default is 6 %, maximum order of
PWM harmonics is automatically calculated from
MaxLossError

Power_Supply

10000

Previews

DC Bus Signal -

f PWM [ Hz

Parameters

OJORO

W @

f_PWM_inve

Modulation

enable_PWM

InverterLevels

MaxLossError

nl_vector

ItpKind

PWM Frequency

8000

6000

4000
2000
0
0 1000 2000 3000 4000 5000 6000
Speed / rpm
Enable PWM evaluation
false t") ® 2z
Number of inverter levels (only used for PWM)
2.0 RWEEZ
Maximum error of simulated PWM losses in percent
6.0 % NWEBEZ
[0.0 3000.0 4500.0 6000.0] rpm @) B2
[0, ni_max / 2, nl_max * 3/4, nl_max]
Specifies the kind of interpolation (Default: next)
‘next’ t") ® 2z
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AC losses in dq Grid in SyMSpace

Verification of Interpolation Quality

Error P2 / W Error P2 / %

* First: check quality of load point interpolation

* Add PMSM_Model_Verification_FEMM
component to your project 1250 -

33.27

1500 1500 ~

29.58
1250 ~

25.89

* In general (also for basic models without
AC losses) highly recommended

* Check interpolated AC loss results 750 1 8

* Add a PMSM_Loadpoint_AClosses_FEMM
component to your project and link ild, ilg :
and n/ to the RBF load point for comparison 2501 A8

1000 12124 1000 -22.20

-18.51
750 1§

-14.82

ilq/A

300 1 L 11.13

7.44

3.75

958 0.06

—250 1 -903 —250 1 -3.62

T T T T T T T T T T T T
—-1000 -750 -500 -250 0 250 —-1000 -750 -—-500 -—250 0 250
ild /A ild /A
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AC losses in dq Grid in SyMSpace

Add AC loss loadpoint to WebGUI project

MAUU-OUA_IsOvVac o
M400-50A_Isovac Wizard

BMN-40SH/S_Bomatec : Search
BMN-40SH/S

lStress Boundary Condition| Constantload

Fi

'Op‘[ional\ A o Q
'Optional Part| '|]'|:|'|:|'|1 o

o & PMSM :
| PMSM FEMM

=
. |\‘_o

PMSM Loadpoint

%2 AClosses FEMM
SR 9q

PMSM_Model_RBF H
PMSM Model RBF

PMSM Loadpoint

: My,
'Op‘uonal\ % evForce v

/ 8§ PMSM Postprocessing Settings

o %S 10
v ‘#Postprocessmg_Seﬂmgs ‘

PMSM Loadpoint

'Op‘[ional\ Ty
" StatorStress FEMM

- s V7 0.1-DEPRECATED

LP_NolLoad : | heetree h y =

© PMSM NolLoad RBF
. PMSM MagnetLosses '
o " 123 LP_Nominal : i
i PMSM Loadpoint Motor RBF NGSolve it

2.0
Optional [
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Add Component ,PMSM Loadpoint AClosses FEMM" to a loadpoint

fiad

5 g Loadpoint_AClosses_FEMM
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Transient Voltage Effects

: LINZ
CENTER OF 16
MECHATRONICS



Introduction

Transient Voltage Effects in Electric Machines

* Increasing switching frequencies and slew rates = electric

stress on winding insulation in electric machines rises

* Distribution of voltage within winding is not uniform

14

* Transient overvoltages (S
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Introduction

Transient Voltage Effects in Electric Machines

* Insulation design = model for prediction of transient

overvoltages necessary

* Random wound winding: position of wires not exactly known -

worst case estimation

*Hairpin / form wound winding: position of wires well defined -
voltage distribution can be calculated considering winding

scheme

Science becomes reality I = m
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Overall model

Inverter — Cable — Motor

Inverter /
N

C | Cable // . \
%@ - f \
‘x |
— 4{ PE \ I
L Ground Shield \ /
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Overview

Model for transient voltage effects

L
YL

* High-frequency motor model, evaluation of parameter in 2D FE or analytic

* Efficient computation in frequency domain - calculation of voltage overshoot

Cua
||
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Capacitance Matrix

i ian i i le-11
Simulation in FEMM electrostatic Capacitance matrix .
Resulting capacitance values '
* Main diagonal C;: Turn-to-ground capacitances 1.50
* Off diagonal C;: Turn-to-turn capacitances 135
1.00
0.75
0.50
0.25

Electrostatic FE model
including insulation
and epoxy resin
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Inductance Matrix

le—7
Inductance matrix

Simulation in FEMM Magnetostatic

Resulting inductance values

* Main diagonal L;: Self inductances

* Off diagonal L;: Mutual inductances

L
||

||

0 5 10 15 20 25
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Coil & Phase - Motor model

* Coils = Phase: winding scheme

* Delta and star connection including inverter

Starpoint

Inverter

Inverter
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Motor model — Turn-to-ground Voltage at different Slew Rates
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Solution in the Frequency Domain

Advantages
* Fast model evaluation, no time-consuming 3D or transient FEA

* Frequency dependency of parameters (resistances, inductances) - due to skin and eddy current effects - can be considered

directly = higher accuracy, reduced number of network parameters compared to ladder network approximation

* Free software tools are used (Python, FEMM) = suitable for optimization

MECHATRONICS
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Customization
Prototyping
Development
Research
Science




Proximity Losses

Validation of losses

* Calculation method is based on single conductors.

* Is this method valid for a typical arrangement of conductors in the slot?

124 — x-directioln ]
—— y-direction %/ 2.5% error at 10kHz
0.8 ~
s
o 0.6
0.4
. Error of the proximity losses
' for the array arrangement
0.0 instead of single conductor
10! 102 103 104 10°

Frequency in Hz
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Multi-Conductor Transmission Line Motor Model

Network and equations
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Multi-Conductor Transmission Line Motor Model

State-space model

00 0 00001
D=(0 000000 0)F
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Numerically Robust Solution of State-Space Model

u,  Matrix F has a very high condition number
x+ Du  —> Inversion causes high numeric errors

Fi# = Az + Bu,
—

y = Cx+ Du

l Laplace transform

_ _ _ D=0
FX()s = AX(s) + BUGs), o X(5) = (Fs—A)7'BU(S), () = C(Fs— A)~'BU(s)
Y(s)=CX(s)+DU(s) Y(s) = CX(s)+ DU(s).
L1 Loy Lays Ly O 0 0 0
LisLog Las Lz 0O 0 0 0 - T
LiyLosLasLes O 0 0 0 ~Ry 0 0 0 —10 0 1) B=(10000000)
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