AC Losses and Transient Voltage Effects in Electric Machines

Efficient Simulation Methods

AC Losses and Simulation Methods

Overview of Additional Losses

Efficient simulation method

Based on magnetostatic FEM $f \leq \ f_{el} \ \frac{n_{Steps}}{2}$		Based on AC simulation with frozen permeability
Proximity and skin losses		Proximity and skin losses
Losses in parallel wires	5 7 4 10 9 6 13 8 8 13 1 2 6 4 5 6 7 4	
Magnet losses (slot harmonics, current distortion)		Magnetic losses due to PWM
Losses in rotating and stationary thin-walled sleeves		
		Losses in solid materials

Skin and proximity losses

Losses due to skin effect

Background

- Alternating current in the conductor generates a magnetic field, which causes an electric field induced in the conductor.
- Current density in the middle of the conductor is reduced and at the outer boundary increased.

Calculation method

- Increase of resistance as a function of frequency Ke
- Analytical formula for round wire exists.
- For conductors with arbitrary cross-sections Ke is calculated with FEA.

$$P_{skin} = m \left(K_e(f) - 1 \right) R_{dc} I^2$$

Source: Wikipedia

Current distribution in rectangular wire

Skin and proximity losses

Proximity losses

Background

 Losses due to the alternating magnetic fields, e.g. caused by leakage flux in the slots

Calculation method

- Fourier spectrum of flux density is calculated with FEA for each conductor in slot.
- Losses in the wire are calculated by means of a loss function Fp

$$P_{prox} = \sum_{N_s} \sum_{n_c} \sum_{\nu} \left(F_{px} B_{x\nu}^2 + F_{py} B_{y\nu}^2 \right) f_1^2 l \nu^2$$

Flux density and current density distribution

$$F_{px} = \frac{P_{px}}{f^2 B_x^2 l}$$

Losses in stranded windings

Background

- Power density of electrical machines increases with speed.
- The number of turns decreases, and the wire cross-section increases with increasing speed.
- At low turn count, winding conductors are often subdivided into multiple insulated strands.
- The arrangement of the wires in the slot depends on the manufacturing process.

Losses in stranded windings

Calculation method

- Parameters of the equivalent circuit are calculated with FEA in the frequency domain
- Circulating currents and additional copper losses are evaluated

Losses due to PWM Harmonics

Calculation of PWM signal

- Calculation is carried out in the frequency domain.
- Intersection of modulated voltage with triangular carrier.
- Calculation of the Fourier coefficients for each switching cycle of the voltage signal for
 - Third harmonic injection
 - Space vector modulation
 - Discontinuous PWM min
 - Discontinuous PWM max
 - 2- or 3-level PWM

Losses due to PWM Harmonics

Calculation of PWM signal

- Evaluation of the currents for a symmetrical m phase system with floating star connection.
- Frequency dependent inductances and resistances are used for current calculation.

Losses due to PWM Harmonics

Loss calculation

- Simulation of the permeability distribution in the laminated core for the considered load point.
- Calculation of losses as a function of frequency with AC FE Solver at "frozen" permeabilities.
- Evaluation of losses in solid and laminated components.
 - Wire and hair pins
 - Laminated stack
 - Magnet

AC losses – Loadpoint and dq Grid

Usage in SyMSpace

Add AC losses to WebGUI project

- Add Component "PMSM AClosses FEMM" to PMSM Simulation
- Settings in Geometry.Stator.Coil:
 - EnableACloss is set automatically to true after inserting AClosses
 - Set wc, ncw, WireGrade and AspectFactor
 - Check Preview of WireDiameter
- Further checks:
 - Preview of PMSM_Model (check if the wires are drawn in the correct slots, especially for double layer windings)
 - Check if all materials have a field *rho_el* or *kappa_20*
 - Check if laminated materials have a field tlam.

Postprocessing - PWM Settings

- Usage in Postprocessing (RBF) Components
 - AC losses are automatically evaluated according to settings in Postprocessing_Settings
- Master PWM Settings in Postprocessing_Settings.Power_Supply
 - Constant PWM frequency or speed-dependent vector
 - enable_PWM: default is false → set to true
 - ModulationType: sine, space vector, third harmonic, DPWM min, DPWM max
 - InverterLevels: 2 or 3
 - MaxLossError: default is 6 %, maximum order of PWM harmonics is automatically calculated from MaxLossError

Verification of Interpolation Quality

- First: check quality of load point interpolation
 - Add PMSM_Model_Verification_FEMM component to your project
 - In general (also for basic models without AC losses) highly recommended
- Check interpolated AC loss results
 - Add a PMSM_Loadpoint_AClosses_FEMM component to your project and link ild, ilq and nl to the RBF load point for comparison

Add AC loss loadpoint to WebGUI project

Add Component "PMSM Loadpoint AClosses FEMM" to a loadpoint

Transient Voltage Effects

Introduction

Transient Voltage Effects in Electric Machines

 Increasing switching frequencies and slew rates → electric stress on winding insulation in electric machines rises

• Distribution of voltage within winding is not uniform

 Transient overvoltages
 → damages in wire and slot insulation, partial discharge (PD)

8.421e+003: >8.865e+003 7.978e+003: 8.421e+003 7.535e+003: 7.978e+003

7.092e+003: 7.535e+003

Introduction

Transient Voltage Effects in Electric Machines

- Insulation design → model for prediction of transient overvoltages necessary
- Random wound winding: position of wires not exactly known → worst case estimation
- Hairpin / form wound winding: position of wires well defined → voltage distribution can be calculated considering winding scheme

Overall model

Inverter - Cable - Motor

Overview

Model for transient voltage effects

- High-frequency motor model, evaluation of parameter in 2D FE or analytic
- Efficient computation in frequency domain → calculation of voltage overshoot

Capacitance Matrix

Simulation in FEMM electrostatic

Resulting capacitance values

- Main diagonal C_{ii}: Turn-to-ground capacitances
- Off diagonal C_{ij}: Turn-to-turn capacitances

Inductance Matrix

Simulation in FEMM Magnetostatic Resulting inductance values

- Main diagonal L_{ii}: Self inductances
- ullet Off diagonal L_{ij} : Mutual inductances

Coil → Phase → Motor model

- Coils → Phase: winding scheme
- Delta and star connection including inverter

Motor model – Turn-to-ground Voltage at different Slew Rates

Solution in the Frequency Domain

Advantages

- Fast model evaluation, no time-consuming 3D or transient FEA
- Frequency dependency of parameters (resistances, inductances) due to skin and eddy current effects can be considered directly → higher accuracy, reduced number of network parameters compared to ladder network approximation
- Free software tools are used (Python, FEMM) → suitable for optimization

Proximity Losses

Validation of losses

- Calculation method is based on single conductors.
- Is this method valid for a typical arrangement of conductors in the slot?

Multi-Conductor Transmission Line Motor Model

Network and equations

(A)
$$(C_{11} + C_{12} + C_{13} + C_{14}) \frac{au_{11}}{dt} - C_{12} \frac{au_{22}}{dt}$$

$$-C_{13} \frac{du_{33}}{dt} - C_{14} \frac{du_{44}}{dt}$$

$$= -\left(\frac{1}{R_{p,11}} + \frac{1}{R_{p,12}} + \frac{1}{R_{p,13}} + \frac{1}{R_{p,14}}\right) u_{11}$$

$$+ \frac{1}{R_{p,12}} u_{22} + \frac{1}{R_{p,13}} du_{33} + \frac{1}{R_{p,14}} u_{44} + i_1 - i_2$$

$$(B) - C_{21} \frac{du_{11}}{dt} + (C_{21} + C_{22} + C_{23} + C_{24}) \frac{du_{22}}{dt}$$

$$-C_{23} \frac{du_{33}}{dt} - C_{24} \frac{du_{44}}{dt}$$

$$= \frac{1}{R_{p,21}} u_{11} - (\frac{1}{R_{p,21}} + \frac{1}{R_{p,22}} + \frac{1}{R_{p,23}} + \frac{1}{R_{p,24}}) u_{22}$$

$$+ \frac{1}{R_{p,23}} du_{33} + \frac{1}{R_{p,24}} u_{44} + i_2 - i_3$$

(C)
$$-C_{31}\frac{du_{11}}{dt} - C_{32}\frac{du_{22}}{dt} + (C_{31} + C_{32} + C_{33} + C_{34})\frac{du_{33}}{dt} - C_{34}\frac{du_{44}}{dt} = \frac{1}{R_{p,31}}u_{11} + \frac{1}{R_{p,32}}du_{22} - (\frac{1}{R_{p,31}} + \frac{1}{R_{p,32}} + \frac{1}{R_{p,33}} + \frac{1}{R_{p,34}})u_{33} + \frac{1}{R_{p,34}}u_{44} + i_3 - i_4$$

Multi-Conductor Transmission Line Motor Model

State-space model

$$\bar{\mathbf{A}} = \begin{pmatrix} -R_{11} & 0 & 0 & 0 & -1 & 0 & 0 & 1\\ 0 & -R_{22} & 0 & 0 & 1 & -1 & 0 & 0\\ 0 & 0 & -R_{33} & 0 & 0 & 1 & -1 & 0\\ 0 & 0 & 0 & -R_{44} & 0 & 0 & 1 & -1\\ 1 & -1 & 0 & 0 & -\sum_{i=1}^{4} \frac{1}{R_{p,1i}} & \frac{1}{R_{p,12}} & \frac{1}{R_{p,13}} & \frac{1}{R_{p,14}}\\ 0 & 1 & -1 & 0 & \frac{1}{R_{p,21}} & -\sum_{i=1}^{4} \frac{1}{R_{p,2i}} & \frac{1}{R_{p,23}} & \frac{1}{R_{p,24}}\\ 0 & 0 & 1 & -1 & \frac{1}{R_{p,31}} & \frac{1}{R_{p,32}} & -\sum_{i=1}^{4} \frac{1}{R_{p,3i}} & \frac{1}{R_{p,34}}\\ -1 & 0 & 0 & 1 & \frac{1}{R_{p,41}} & \frac{1}{R_{p,42}} & \frac{1}{R_{p,43}} & -\sum_{i=1}^{4} \frac{1}{R_{p,4i}} \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & & \ddots & & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Numerically Robust Solution of State-Space Model

Matrix *F* has a very high condition number → Inversion causes high numeric errors

Laplace transform

$$FX(s)s = \bar{A}X(s) + \bar{B}U(s),$$

$$Y(s) = CX(s) + DU(s)$$

$$X(s) = (Fs - \bar{A})^{-1}BU(s),$$

$$Y(s) = CX(s) + DU(s).$$

$$Y(s) = C(Fs - \bar{A})^{-1}\bar{B}U(s)$$

$$\bar{A} = \begin{pmatrix} -R_{11} & 0 & 0 & 0 & -1 & 0 & 0 & 1\\ 0 & -R_{22} & 0 & 0 & 1 & -1 & 0 & 0\\ 0 & 0 & -R_{33} & 0 & 0 & 1 & -1 & 0\\ 0 & 0 & 0 & -R_{44} & 0 & 0 & 1 & -1\\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0\\ -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$