Electromagnetic Forces on Stator Teeth

SyMSpace Days

September 18-19, 2024

NVH Simulation Workflow

Setup of Workflow

- Force excitation of stator teeth can be calculated using the component *PMSM Loadpoint EMForce*.
- Static and dynamic eccentricity of the stator and rotor can be evaluated using the component
 PMSM Loadpoint EMForce Displace.
- A simplified model for calculating acoustic power (ERP)
 based on cylindrical shells is available with
 Acoustic Power Analytical.

NVH Simulation Workflow

Example: TeslaModel3

- The EMForce component is added to a Loadpoint
- Calculation results:
 - 2D FFT of forces and moments acting on the stator in radial and tangential directions.
 - CSV table for data exchange in mechanical simulation.
 - Visualization of forces in radial and tangential directions for each skewing layer.

Calculation of the force on an element of the stator tooth

- The flux density in the air gap is used to calculate the stress on the stator surface using the Maxwell stress tensor.
- By integrating the stress over an element, the radial and tangential components of the force are determined.

$$\bar{S} = \frac{1}{\mu_0} \begin{bmatrix} B_x^2 - B^2/2 & B_x B_y \\ B_x B_y & B_y^2 - B^2/2 & B_y B_z \\ B_x B_z & B_y B_z & B_x^2 - B^2/2 \end{bmatrix} \qquad B^2 = B_x^2 + B_y^2 + B_z^2$$

Integration Methods

- The mapping of the electromagnetic forces to the mechanical simulation software can be done in different ways
 - Mapping of a single force and torque per tooth
 - Mapping of forces onto tooth surface elements
- The number of force vectors per tooth depend on the tangential mesh density
 - Example on the right has 4 elements per tooth
 - The forces are computed by integrating the radial and tangential stress acting on the tooth
 - Solution B will be used as the stress integrated over the slot opening is acting upon tooth edge
 - This method was verified by stress integration around the tooth.

Force integration path

- The force integration should be performed along the tooth surface.
- The integration path on an arc in the air gap yields equivalent results.
 - Evaluation is simplified since results only need to be determined on an arc in the air gap.
 - Meshing of the air gap can be adjusted to improve the accuracy of the calculation results.

Forces on different skewing layers

- The stator tooth is divided into *n_nodes* (circumferential direction) and *n_layers* (skewing_steps).
- Forces are integrated over the surface according to the figure.
- The points of force application are the midpoints of the surfaces on the tooth.

Solution B: Integration path distributed

Air Gap Meshing

Three mesh layers

- Air gap is divided into three mesh layers
- Parameter Stress_Settings.EquidistantAirgapMesh set to False

Air Gap Meshing

Five mesh layers

- Air gap is divided into five mesh layers
- Parameter Stress_Settings.EquidistantAirgapMesh set to True

Advanced settings

- The NVH behavior of the motor is significantly influenced by certain operating parameters:
 - Currents in d- and q-direction.
 Parameters ild and ilq are linked to load point results (or can be set manually).
 - DC component in the phase currents.
 This parameter can be set by *Idc_percent* (DC current in percent of RMS terminal current)
- Mechanical tolerances e.g. displacement of stator or rotor cause additional harmonics in the force spectrum.
 - A mechanical displacement of the rotor or stator is calculated by inserting the EMForce Displace component.
 - Select Mode = Stator for stator displacement (static eccentricity)
 Mode = Rotor for rotor displacement (dynamic eccentricity)

Force Calculation for Rotor / Stator Displacement

Simplified simulation method

- Two additional FEMM simulations are performed for the sector:
 - 1. The rotor is shifted upward by the eccentricity to reduce the air gap.
 - 2. The rotor is moved downward by the eccentricity to increase the air gap.
- For a stator or rotor displacement, the flux density as a function of rotor position is interpolated between the increased air gap, the nominal air gap, and the decreased air gap.

Noise Calculation

Acoustic Power Analytical 1.0

Simplified analytical model

• Noise calculation base on cylindrical shell elements.

"Noise of Polyphase Electric Motors" by Jacek F. Gieras, Chong Wang, Joseph Cho Lai; ISBN: 0-8247-2381-3

- Calculation of ERP (Equivalent Radiated Power) based on simplified calculation of natural frequencies of shell elements.
 - Natural frequencies are evaluated for different modes

Mode 2:

Example: Stator with 24 slots

- Number of slots: 24
- Number of pole pairs: 4
- Number of nodes per tooth: 1
- Number of skewing steps: 5
- Skewing angle: 30°
- Type of skewing: quasi-continuous

Example: Stator with 24 slots

2D FFT of the radial force component

- Values in the table correspond to the amplitudes of the respective force components.
- Rows represent the orders of the temporal component (i.e., rotor rotation).
- Columns correspond to the mechanical modes.
- Order 0 and Mode 0 correspond to the radial magnetic force on the stator surface.

	Mode 0	Mode 8
Order 0	301.84153	1.40646
Order 8	0.59538	1.31262
Order 16	0.43806	41.19042
Order 24	3.81983	0.16582
Order 32	0.05192	0.03018
Order 40	0.01571	0.30042
Order 48	0.01527	0.00069
Order 56	0.00632	0.01069

Science becomes reality

